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Abstract
Health risk assessments for extreme heat and the design of corresponding interventions can be
enhancedwithmore information regarding causal drivers of year-to-year variability in adverse
outcomes. Summer 2016was a record-setting year in terms of summer heat and its impacts on health
inMaricopaCounty, Arizona, USA. Themonth of Junewas thewarmest observed in the county and
the six-monthwarm season spanningMay throughOctoberwas the fourthwarmest. In the same year,
a record number of heat-associated deaths was reported by the heat surveillance program run by the
county health department.We analyzed the time series of heat-associated deaths to quantify the extent
towhich the unprecedented death count in 2016was driven by anomalousweather.Wefirst estimated
the historical association between temperature and heat-associated deaths for the time period
2006–2015 using a time series regressionmodel. Subsequently, we used themodel to generate
predictions of daily heat-associated deaths in 2016 based on the observedweather.We found no
evidence that the unusually high number of heat-associated deaths observed inMaricopaCounty in
2016was related to observedmeteorological conditions. Regardless of the exposure variable ormodel
parameterization chosen, the prediction for 2016 fell near or below the historical average number of
heat-associated deaths. If the conventionalmethods for estimating the temperature–mortality
association are reasonably approximating a causal relationship, factors other than theweather were
mostly responsible for the surge in deaths in 2016. Thesefindings highlight the importance of non-
meteorological factors as drivers of temporal variability in the health burden associatedwith heat,
which have generally not been included in quantitative retrospective or prospective studies. Further,
they highlight a shortcoming in preparedness and response efforts for heat in the study setting that
should be diagnosed and addressed as soon as possible.

Introduction

Extreme heat poses public health risks in many cities
across the globe, especially in regions where heat is
persistent and severe (e.g. Hartz et al 2013, Harlan
et al 2014). Quantifying the public health burden of
heat in places that experience this hazard most
intensely, as well as understanding the causal drivers of
that burden, may be instructive as cities prepare for a
warmer future. Here, we explore factors that may have

contributed to an unprecedented number of heat-
associated deaths that occurred in one of the hottest
metropolitan areas of the United States in the summer
of 2016—one of thewarmest seasons on record.

Many studies point toward a future with higher
average temperatures as well as more intense and fre-
quent extreme heat events as a result of greenhouse gas
forcing and urbanization (e.g. Georgescu et al 2014,
Maloney et al 2014, Russo et al 2014). These changes
have also been projected to increase heat-associated
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morbidity and mortality (e.g. Åström et al 2013,
Kingsley et al 2016, Petkova et al 2016). However, it is
unclear how reliably historical models of the temper-
ature-health association at short time scales (days)
produce estimates of variability at longer time scales
(e.g. seasons, years). Available evidence suggests
that long-term variability may be difficult to model
(Guo et al 2012). There is high uncertainty regarding
the contribution of climate change as a driver of the
future public health burden of heat in comparison
with other factors such as population growth, demo-
graphic transition, and adaptation strategies (Hondula
et al 2015, Petkova et al 2016, Gosling et al 2017). The
interplay between these factors has rarely been exam-
ined retrospectively, but the limited evidence available
suggests that social factors play a substantial role
in influencing long-term trends in heat-associated
mortality (e.g. Bobb et al 2014, Ng et al 2016).

One of the planet’s warmest urbanized regions is
the southwestern United States. Understanding the
impact of heat in this region, where conditions are
already severe throughout a prolonged warm season,
may provide insights into how other cities may be able
to cope with projected warming (Centers for Disease
Control and Prevention (CDC) Environmental Public
Health Tracking Program 2018). Maricopa County,
Arizona, which spans most of the rapidly growing
Phoenix Metropolitan Area, is home to more than
four million people (US Census Bureau 2017).
In 2016, the month of June was the warmest to
date in the US National Oceanographic and Atmo-
spheric Administration Climate Division within
which Maricopa County is located, the month of July
was the second-warmest, and the six-month warm
season spanning May through October was the sixth
warmest (NCEI 2018). In the same year, the Maricopa
County Department of Public Health (MCDPH)
reported a record high number of heat-associated
deaths (MCDPH 2017). The 155 confirmed heat-asso-
ciated deaths in 2016 exceeded the previous record by
48 cases and was more than 82% above the standar-
dized prior ten-year average.

The objective of our analysis is to quantify the
extent to which the abnormally high heat-associated
death count of 2016 was driven by meteorology using
heat-associated death records in concert with weather
observations. In doing so, we hope to shed more gen-
eral insights into the factors that reduce or exacerbate
the impacts of heat and how preparedness and
response strategies can improve. This knowledge is
especially important to build in light of projections of
large increases in heat-associated mortality in many
cities resulting from global and urbanwarming.

Methods

Maricopa County, Arizona, is located in the Sonoran
Desert in the southwestern United States and has a

hot, arid climate. Summer daily maximum tempera-
tures routinely exceed 38 °C (100 °F) and an average
year brings 18 days of daily maximum temperatures of
43 °C (110 °F) or higher at Phoenix Sky Harbor
Airport (CDC Environmental Public Health Tracking
Program 2018). Rapid urbanization over the past
several decades has led to large increases in daily
minimum temperatures, a distinctive signature of the
urban heat island effect (Chow et al 2012, Georgescu
et al 2013). The county accounts for themajority of the
geographical extent and population of the Phoenix-
Mesa-ChandlerMetropolitan Statistical Area, the 12th
largest by population in the United States (US Census
Bureau 2017).

Several regional agencies have made significant
efforts to assess and reduce the public health burden of
extreme heat. Among them, MCDPH operates an
advanced and distinctive heat mortality surveillance
program. Health authorities began more closely mon-
itoring and classifying heat-associated deaths in 2006
after a highly publicized heat wave in 2005 resulted in
greater local awareness of heat-associated deaths (Yip
et al 2008). Since 2006, MCDPH has tracked and
investigated heat-associated deaths, collecting data on
location, time, demographics, and other circum-
stantial evidence for cases in which heat is suspected to
have been the immediate cause of death or a con-
tributing factor. The health department obtains this
information from two sources: (1) the Maricopa
County Office of the Medical Examiner, which flags
deaths that it suspects to be heat-associated, and pro-
vides circumstances of death; and (2) the Arizona
Department of Health Services, Office of Vital Regis-
tration, which contains a database of confirmed heat-
associated cases. MCDPH extracts confirmed heat-
associated cases by querying the Vital Registration
database using key phrases (e.g. ‘heat exposure’,
‘exhaustion’). The program also looks for certain
International Classification of Disease-10 (ICD-10)
codes that might indicate a heat-associated death (e.g.
X30 (Exposure to excessive natural heat), T67.X
(Effects of heat and light), P81.0 (Environmental
hyperthermia of newborn)). MCDPH’s efforts have
culminated in a record of heat-associated deaths that
is more inclusive than queries based on ICD codes
alone (e.g, Berko et al 2014) but more precise than
the construct of excess all-cause deaths that is often
used for temperature–mortality studies (e.g. Ander-
son and Bell 2011, Gasparrini et al 2015). More
details of the MCDPH heat surveillance programs
are available online (https://maricopa.gov/1858/
Heat-Surveillance).

MCDPH heat surveillance data from 2006 to 2016
were used for this analysis. This time period encom-
passed all years for which MCDPH has implemented
their enhanced surveillance system for heat-associated
deaths. The time series of heat-associated deaths spans
the full calendar year, although the vast majority
of cases (∼90%) are reported in the months
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May–September. Daily heat-associated counts were
standardized to account for longer-term changes in
population size and composition (e.g. age structure) as
well as overall population health status. We directly
standardized the data by adjusting the daily heat-asso-
ciated death counts based on the total deaths from
all causes reported in the county each year. We
surmised that total deaths would be proportional to
population size and composition as well as overall
population health. All-cause annual mortality data
were sourced from the Arizona Department of Health
Services Office of Vital Statistics (http://pub.azdhs.
gov/health-stats/report/ahs/ahs2015/pdf/5e1.pdf).
All data were standardized to 2015, the most recent
year for which totalmortality counts are available.

Daily meteorological data were obtained from the
National Centers for Environmental Information for
Phoenix Sky Harbor Airport, an official first-order
weather station located near downtown Phoenix. We
obtained daily maximum, mean, and minimum dry
bulb temperature, and examined the daily distribution
of temperatures in 2016 compared to the ten years
prior, with an emphasis on the five-month warm
season (May–September) that accounts for the
majority of heat-associated deaths. We did not incor-
porate humidity into the exposure models given prior
research demonstrating little difference between
temperature–mortality models that include or
exclude humidity in the study setting (e.g. Harlan
et al 2014). We also incorporated information from an
experimental National Weather Service (NWS) pro-
duct called HeatRisk (https://wrh.noaa.gov/wrh/
heatrisk/). HeatRisk provides a daily classification of
observed or forecast meteorological conditions based
on the relative severity of hot weather compared to cli-
matology and is being used as a decision support tool
in NWSWeather Forecast Offices across the American
Southwest at present.

Our methodological approach was to hindcast the
2016 heat-associated death counts based on temper-
ature–mortality associations derived from the period
2006–2015 and meteorological observations from
2016. Because there is no consensus regarding the
optimal statisticalmodel or exposure variable for asso-
ciating weather and heat-associated deaths in this
region (e.g. Hondula et al 2014, Petitti et al 2016) or
others (e.g. Barnett et al 2010), we used a number of
different modeling approaches and exposure variables
to create hindcasts for 2016. To minimize the intro-
duction of bias into the hindcasting approach, the
functional form of all models was determined ahead of
detailed review of observations ormodel output.

We created three different types of models:
(1) simple temperature–mortality; (2) complex temp-
erature–mortality; (3) HeatRisk. The models estimate
the daily association between the exposure variable
and the risk of heat-associated deaths based on the
observed time series of heat-associated deaths for
the entire population of Maricopa County and the

observed daily weather. For the simple and complex
temperature–mortality models, we tested maximum,
mean, and minimum temperature as the exposure
variable. The simple temperature–mortality models
took the following form:

s kLog scaled_heatdeaths temp, 4 ,= =( ) ( )

where scaled_heatdeaths is the standardized daily heat-
associated death count from the MCDPH surveillance
program, s is a natural penalized thin plane smoothing
spline with k knots, and temp is the exposure variable
(maximum, mean, or minimum temperature). We did
not control for seasonality in these models because we
anticipated that any seasonality in heat-associated death
countswould primarily arise frommeteorology andnot
confounding factors (following Petitti et al 2016). The
complex temperature–mortality models took the fol-
lowing form:

s

k

Log scaled_heatdeaths complex_temp, by

as.factor month , 4,

=
= =
( ) (

( ) )

where complex_temp variable was applied to take into
account the lagged effect of temperature on human
mortality (e.g. Gasparrini et al 2015). The complex_
temp variable was defined as n-day moving average of
maximum, mean, or minimum temperature of the
current and previous days. Alternative variants of the
moving average from two-day (lag 0–1) to five-day (lag
0–4)were used in the complex model, and the moving
average providing the best fit (based on the generalized
cross validation score)was used as the finalmodel. The
HeatRiskmodel took the following form:

Log scaled_heatdeaths as.factor HeatRisk ,=( ) ( )

where HeatRisk variable represents the NWS’s Hea-
tRisk classification (five categories: No Elevated Risk,
LowRisk,Moderate Risk,High Risk, VeryHighRisk).

We generated hindcasts of 2016 heat-associated
mortality using the observed daily temperatures from
2016 as input to each model. Daily hindcasts of heat-
associated deaths were generated and summed by year.
Model performance was evaluated by examining the
deviance explained in the daily historical (2006–2015)
heat-associated death records. Subsequentlywe reviewed
the extent to which the model captured annual varia-
bility in heat-associated deaths counts, with an emphasis
on how the hindcast for 2016 compared to other years.
Confidence intervals (C.I.) for annual sums were calcu-
lated as the square root of the annual sum of the squared
radii of the daily C.I. All analysis was conducted using
R version 3.4.2, accessed through RStudio version
1.1.383. Time seriesmodeling relied on themgcvpackage
(Wood2017).

Results

Climatological assessment of 2016
Warm season daily mean temperatures in Maricopa
County in 2016 followed a progression similar to the
prior ten-year average, peaking in June (daily average
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mean temperature=34.9 °C) and July (daily average
mean temperature=36.2 °C). The highest daily
mean temperatures were observed during two pro-
longed periods in which the average daily mean
temperature was above 37 °C, one occurring 19–28
June and another that spanned most of the latter half
of July. The highest daily mean temperature of the
summer was recorded on 20 June (39.4 °C). Despite
the high frequency of very warm days in 2016,
compared to other years in the period 2006–2015,
there were relatively few days at the highest end of the
temperature distribution (figure 1). For example, there
were nearly 15 fewer days with daily mean tempera-
tures at or above 32 °C than the average of the previous
ten years.More importantly from a health perspective,
there were only eight days with daily mean tempera-
tures above 38 °C compared to an average of 10.6 over
the previous decade, and zero days with daily mean
temperatures of 40 °C or above. An even more
pronounced absence of days at the high end of the
temperature distribution was observed for minimum
temperatures, whereas the pattern of maximum tem-
peratures was more closely aligned with the previous
ten years (not shown).

Temperature–mortalitymodels
The mean standardized annual heat-associated death
count in Maricopa County over the period 2006–2015
was 85.6, with a standard deviation of 24.6. In 2016 the
number of reported cases (155)was more than 85.5%,
or 2.8 standard deviations, above the historical average
(figure 2).

Simple temperature–mortality models all showed
a clear and strong relationship with historical
daily heat-associated deaths. Figure 3 illustrates the

modeled relationship between daily heat-associated
deaths and daily mean temperature, which was a
better predictor of the relationship over the period
2006–2015 thanminimumormaximum temperature.
Differences between the models were, however, very
small. The daily mean temperature model with zero
lag accounted for 50.7% of deviance in daily standar-
dized heat-associated deaths; minimum temperature
accounted for 49.3% and maximum temperature
accounted for 46.9%.

There was a much weaker association of the
relationship between modeled and observed heat-
associated deaths when the model predictions and
observations were aggregated by year (figure 2). The
modeled annual heat-associated death counts fell in a
narrow range (74.1–95.6) compared to the standar-
dized annual observations (43.9–121.6). Model uncer-
tainty was low relative to the inter-annual variability in
the observations; the 95% C.I. for the annual heat-
associated deaths counts (not shown on figures) was
never wider than±1.0 deaths per year. The aggregated
counts from the zero lag mean temperature model
explained approximately 19.7% of the variance in the
aggregated annual observations. Using this model, we
would have anticipated 79.7 heat-associated deaths in
2016 (95% C.I.=78.8, 80.6) based on the observed
temperatures. Predictions from models based on
minimum and maximum temperature were 77.6
(76.9, 78.4) and 84.1 (83.0, 85.1) deaths, respectively.

Regardless of the exposure variable chosen, the
prediction for 2016 and the upper bound of its 95%C.
I. using a simple temperature–mortality model falls
below the historical average number of heat-asso-
ciated deaths. In fact, based on mean temperature, the
prediction would have ranked as the 3rd lowest over

Figure 1.A comparison of the distribution of observedwarm season (May–September) dailymean temperatures between 2006–2015
(maroon bars) and 2016 (gold bars) at Phoenix SkyHarborAirport inMaricopaCounty, AZ.Dailymean temperatures were rounded
to the nearest integer.
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the 11 years for whichmodel predictions are available.
The model consistently under predicted mortality
across the three months of the warm season with the
most heat-associated deaths, with June, July, and
August associated with under-predictions of 42%,
51%, and 50%, respectively. Similarly, daily errors in
model predictions were inversely correlated with tem-
peratures, with larger errors occurring on the hottest
days. Themean absolute error for daily predictions on

days with dailymean temperatures above the 95th per-
centile in 2016 was 1.47 deaths, whereas on days
between the 75th and 95th percentile the mean abso-
lute error was 0.97 deaths.

Complex temperature–mortality models provided
a better fit to the historical data than the simple mod-
els. After testing multiple combinations of exposure
variables, smoothing windows, and interaction effects
with month, we identified the best complex model to

Figure 2.A comparison of observed andmodeled heat-associated deaths inMaricopaCounty, Arizona, 2006–2016. The bars show the
standardized (gold) and raw (maroon) observed annual heat-associated death totals. The symbolized lines show the annual hindcast
heat-associated death totals from simple (circles), complex (squares), and categorical (triangles) temperature–mortalitymodels.
Standardization of heat-associated death totals used 2015 as the reference year. No standardized heat-associated death total is available
for 2016 because total annualmortality counts had not yet been aggregated by the state health department at the time thismanuscript
was prepared; the standardized total for 2016 is assumed tomatch the raw total.

Figure 3.Themodeled relationship between daily heat-associated deaths and dailymean temperature inMaricopa County, Arizona,
United States, 2006–2015. The solid line shows the effect estimate and the dashed lines show 95%confidence intervals.
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include four-day moving average daily mean temper-
ature (lag 0–3), with an interaction term formonth as a
categorical variable. This model explained 56.0% of
the deviance in daily standardized heat-associated
mortality. Replacing mean with minimum and max-
imum temperature, keeping other parameters con-
sistent, only changed the model diagnostics slightly
(54.7 and 55.1% deviance explained, respectively). We
did not find strong evidence of an added ‘heat wave’
effect in our exploration of more complex statistical
models, and thus did not investigate the potential
impact of heat wave attributes including duration,
timing, and intensity (see Anderson andBell 2011).

Despite the statistical improvement of the com-
plex temperature–mortality models in fitting the his-
torical data, the hindcast for heat-associated mortality
in 2016 did not change considerably. Using the com-
plex model with mean temperature, we estimated 82.0
(95%C.I.=80.0, 84.1) heat-associated deaths in 2016
based on the observed meteorology. Hindcasts based
on minimum (80.6 (78.6, 82.6)) and maximum (82.0
(80.2, 83.9)) temperature were similar, and all three
were below the historical average of 85.6 heat-asso-
ciated deaths per year (standardized). The complex
model had a similar pattern of seasonal errors as the
simple model, with larger errors on hotter days and in
hottermonths.

The model based on the NWS HeatRisk product
did not fit the historical observations as well as the
simple and complex temperature–mortality models.
This categorical variable explained 33.1% of the
deviance in observed heat-associated deaths. Effect
estimates were greater than one heat-associated death
for the two highest HeatRisk categories (red and
magenta), with 1.25 deaths predicted per red day and
1.53 deaths predicted per magenta day. The model
prediction for 2016 using HeatRisk was 77.3 (75.7,
78.8) heat-associated deaths, which is below the
observed historical average and is the lowest number
of heat-associated deaths predicted by any model we
examined in this study.

Discussion and conclusions

Using widely applied statistical modeling techniques,
we were unable to find evidence to suggest that the
unusually high number of heat-associated deaths
observed in 2016 in Maricopa County, Arizona, was
related to observed meteorological conditions. Most
models, in fact, suggested that 2016 should have
been a year with a normal or below-normal number of
heat-associated deaths. If population health risks
related to heat are reasonably well approximated
by widely applied time series models of the temper-
ature–mortality association (e.g. Barnett et al 2012,
Harlan et al 2014, Gasparrini et al 2016), our results
indicate that factors other than the weather were

predominantly responsible for the surge in heat-
associated deaths in 2016.

The study findings serve as a case study for one
geographic location and one defined time period and
should be interpreted within that context. Replication
to other settings with similarly available health records
is a necessity and the methodological approach should
be highly transferable elsewhere. If these results are
more widely applicable, they challenge some existing
methods and paradigms in the scientific literature
concerning temperature-related health impacts. For
instance, many studies project significant increases in
heat-associated mortality in the future with models
that are largely based on temperature change alone
(Huang et al 2011, Hondula et al 2015). Projection-
oriented studies typically do not take into account key
factors that may act as effect modifiers such as timing
and duration (Barnett et al 2012, Gasparrini et al 2016)
environmental variables including air quality (Burkart
et al 2013, Vanos et al 2014, Willers et al 2016), social
attributes (Burkart et al 2014, Kovach et al 2015,
Urban et al 2016), health outcomes observed in pre-
vious seasons (Rocklöv et al 2009, Ha et al 2011), and
mortality displacement (Hajat et al 2005, Yang
et al 2012, Saha et al 2013, Qiao et al 2015). Our find-
ings suggest that these factors may be critical to
include in assessments of future risk and potential
uncertainties associated with applying contemporary
models are quite wide. Our results are similar in nat-
ure to those of Guo et al (2012), who found high year-
to-year variability in the relative risk of heat-related
mortality among the elderly in the United States,
which also suggests an important role for factors
beyond those typically considered in temperature–
mortality studies. If successful adaptation to heat was
occurring in this community, the historical model
should have overestimated the number of heat-asso-
ciated deaths observed in 2016. Instead, nearly all of
the models we generated led to an underestimate.
Understanding the extent to which societies will con-
tinue to be able to adapt to heat, especially given pro-
jected urban- and global-driven climate change, is a
critical research need (Åström et al 2017, Gosling
et al 2017).

The major finding of our study, that an exception-
ally warm summer should not have seen an exception-
ally high number heat-associated deaths, may seem
counterintuitive. However, conventional summary
statistics commonly used to determine monthly and
seasonal records are not optimal indicators of the risk
of heat-associated deaths. Although 2016 was an
abnormally warm summer in Maricopa County based
on conventional metrics, the distribution of daily
temperatures was relatively favorable from a health
perspective. The nonlinearity of the temperature–
mortality functions implies that the number of days at
the uppermost end of the temperature distribution is
especially influential in the predicted annual total of
heat-associated deaths; the hottest days are associated
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with the highest modeled heat-associated mortality.
The relative absence of these days in the record for
2016 (figure 1) contributed to a lower total number of
hindcast heat-associated deaths for that year. There is
some evidence that the timing of heat within the warm
season may also be important to consider in modeling
heat-related mortality (e.g. Gasparrini et al 2016). In
Maricopa County in 2016 the six days with the highest
mean temperature were split evenly between the
months of June and July, which is consistent with the
long-term climatology associated with the regional
monsoon pattern that suppresses temperatures in late
summer. There were two multi-day periods with
anomalously high daily mean temperatures in the
month of June, and June was the month with the
greatest positive difference inmonthly mean tempera-
tures versus the prior ten years. The absolutely high
daily mean temperatures in the month of June con-
tributed to a higher hindcast total for annual mortal-
ity, but there was no evidence from the historical
mortality record to suggest that this relative early-sea-
sonwarmth should have been especially dangerous.

Given that meteorological differences between
2016 and other years in our study period do not appear
to account for the increase in heat-associated deaths
observed in 2016, we investigated other factors that
may be responsible. Because detailed information
about the circumstances and exposure histories of
decedents are not systematically available, even from
an advanced surveillance program like the one oper-
ated by MCDPH, it is very difficult to make a strong
causal argument based on the health records alone.
We offer a few potential explanations drawing from
our local observations and expertize. Of the many
potential risk factors for heat-associated deaths that
are tracked by MCDPH, two stood out with dis-
proportionately high representation in 2016 cases:
homelessness and age.

One possible contributing factor was an increase
in unsheltered people experiencing homelessness in
the region (MAG 2017). Unsheltered people experien-
cing homelessness are believed to be more vulnerable
to environmental heat because of higher exposure and
higher physical susceptibility related to pre-existing
health conditions including mental health disorders
(e.g. Longo et al 2017, Schmeltz and Gamble 2017).
According to point-in-time survey data collected by
the regional transportation planning association,
Maricopa County has seen an increase in the general
population experiencing homelessness since 2014 and
experienced a 25% increase in unsheltered people
experiencing homelessness between 2015 and 2016
(MAG 2017). Given the high degree of vulnerability to
heat-associated with homelessness, an increase in the
number of unsheltered people experiencing home-
lessness could increase the number of heat-associated
deaths overall. According to MCDPH statistics, the
number of heat-associated deaths among individuals
experiencing homelessness over the period 2011–2015

ranged from 8 to 13 deaths per year, accounting
for 9.5%–16% of total cases. However, in 2016
MCDPH reported 55 heat-associated deaths among
people experiencing homelessness, which represented
35.5% of all heat-associated deaths recorded. Further,
all heat-associated deaths for those experiencing
homelessness were discovered outside, strengthening
plausibility that living in unsheltered circumstances
would increase a homeless person’s vulnerability to
heat. Though the causal pathway linking increased
numbers of unsheltered people experiencing home-
lessness and the increase in heat-associated deaths
among this population is still uncertain, the statistics
suggest an association between shelter status and
number of homeless deaths.

An additional population that experienced a high
number of heat-associated deaths in the era of the
MCDPH surveillance program was the 50–64 age
group. In 2016, this age group accounted for 41% of
heat-associated deaths. In a typical year, the 50–64 age
group accounts for the highest number of heat-asso-
ciated deaths, and this remained the case in 2016.
However, in 2016 the rate of heat-associated deaths
was also highest for the 50–64 age group compared,
whereas it is usually the 65–74 and 75+ age groups
that have the highest rate. When stratified by gender,
the differences were more apparent; the mortality rate
for 50–64 year old males well exceeded that of both
65–74 and 75+ males in 2016. This is significant as
men consistently make up the vast majority of the
deaths in this age group (73%–100% between 2011
and 2016) andmaintainmortality rates that are at least
twice as high as females indicating a potential high-
risk group. Although homeless 50–64 year olds made
up a significant proportion of the total deaths for 2016,
homelessness does not appear to fully account for the
unusually high rates in this age group. Given these sta-
tistics, it is possible that current intervention strategies
overlook this population which may include many
who are still of working age and maintain outdoor
jobs, putting them at high risk for heat illness or death.

Limitations
This study was designed using records from a dis-
tinctive local heat mortality surveillance program. As
such, the study findings are only directly relevant to
one particular study area. Differences in reporting
practices for heat-related deaths are highly variable
between different jurisdictions and reporting agencies,
and replication of this study design in other settings
would inform the generalizability of results. Despite
the advanced nature of the Maricopa County heat
surveillance program, there are some uncertainties in
the mortality time series that could have influenced
our results. We cannot completely rule out the
potential for error in the year-to-year counts asso-
ciated with personnel changes and subjective inter-
pretation of cases, although we have no evidence to

7

Environ. Res. Lett. 13 (2018) 094022



suggest substantial changes in the reporting practices
and systems from which the heat mortality data are
generated. To the best of our knowledge any related
errors should be random over time. Furthermore,
there is some error introduced into the analysis related
to the timing of heat-associated deaths: in cases where
the body is presumed to be found after the day of
death, the death is officially pronounced by the Office
of theMedical Examiner at the time and date the body
was found. We anticipate that any error in our models
related to the time difference between actual and
recorded death to be small given that lagged models of
the temperature–mortality relationship were not
superior to models with no lag. We also acknowledge
that there is some uncertainty regarding the accuracy
of the point-in-time survey data that we examined as
an estimate for the size of the homeless population in
Maricopa County. The point-in-time survey is col-
lected by a predominantly volunteer group outside of
the warm season and may not be an optimal represen-
tation of the summertime population. However, as is
the case with the health records we examined, we have
no evidence of major changes in data collection or
reporting practices during our study period.

Although we adopted a number of different mod-
eling approaches to estimate the exposure-response
relationship, our focus was on temperature as the pri-
mary independent variable. The analysis did not span
the full range of potential confounding variables or
effect modifiers such as air pollutants, humidity,
short-term mortality displacement, intra-seasonal
changes in susceptibility, the influence of winter mor-
tality on the size of the population susceptible to heat,
and spatial variability in heat exposure associated with
the urban heat island effect (O’Neill et al 2005,
Stafoggia et al 2009, Ha et al 2011, Goggins et al 2012,
Qiao et al 2015, Davis et al 2016 and Gasparrini
et al 2016). We also did not explicitly measure the
effects of ‘heat waves’ independent of the main temp-
erature effect. Prior research and our own experience
analyzing these records in Maricopa County leads us
to expect that all of these effects would be small and
not influence the overall findings (Harlan et al 2014,
Petitti et al 2016). Finally, amore systematic evaluation
of multi-year trends in heat-associated mortality risk
factors would be a useful complement to this work.

One of the variables we used in our analysis is the
categorical HeatRisk metric from an experimental
NWS product. The model to estimate heat-associated
deaths based on HeatRisk did not perform as well as
the simple and complex models based on continuous
temperatures and month. HeatRisk offered a theor-
etical advantage to other models because of its implicit
consideration of current weather conditions relative to
climatology, which has been suggested to be a risk fac-
tor for heat-associated deaths (e.g. Guirguis et al 2014).
However, the categorical nature of HeatRisk severely
limited the extent to which the statistical model could
discriminate risk between small differences in high

temperatures. HeatRisk is intended as a tool for public
communication and decision-making and not for pre-
cise estimates of heat-associated deaths. We did find a
higher risk of heat-associated death at more severe
HeatRisk categories, which is encouraging in terms of
the tool’s potential to encourage meaningful behavior
change on themost dangerous days.

Conclusions and recommendations
In general, our study findings highlight gaps in our
current understanding of the drivers of year-to-year
variability in heat-associated deaths and gaps in
current local policies and programs striving to reduce
the public health impacts of heat. We recommend
more research attention toward analysis of local
policies and programs that are intended to modify the
association between temperature and human health.
The demographic shifts we observed among the
decedents in this study may suggest that public health
and social interventions for specific highly vulnerable
populations are not yet fully understood or effective in
our region. We are severely limited, however, in our
ability to speculate about the pathways and interac-
tions among contributing factors that may have led to
those shifts. Generating more data that can help
researchers and practitioners understand behaviors
and exposure circumstances contributing to risk of
heat-related illness and death should be a high priority
(e.g. Kuras et al 2017). These data would be especially
important to help practitioners prioritize urban heat
mitigation initiatives, which have significantly varying
impacts on different parts of the diurnal temperature
cycle (e.g. Hondula et al 2014). Our analysis suggests
that efforts are needed to reduce both daytime and
nighttime temperatures, as mean temperatures were
more strongly correlated with heat-associated deaths
thanminima ormaxima.

Our results highlight the importance of non-
meteorological factors as drivers of the health burden
associated with extreme temperatures, which have
generally not been included in quantitative retro-
spective or prospective studies. Recent research indi-
cates that projections of heat-related deaths may be
more sensitive to assumptions about adaptation mea-
sures rather than global emissions scenarios or climate
model choice (Gosling et al 2017), and more historical
evidence concerning the relative importance of differ-
ent factors that contribute to annual variability in
heat-health impacts may help refine and guide future
policy. Failure to account for other important compo-
nents of the causal pathway that link outdoor condi-
tions to health outcomes, which our study suggests
were dominant factors for one notable year in one city,
might lead researchers to reach incomplete or even
incorrect conclusions regarding the current and future
health risks associated with heat and the optimal stra-
tegies to reduce those risks. Further, the results high-
light a shortcoming in preparedness and response
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efforts for heat in the study region that should be diag-
nosed more specifically and addressed as soon as pos-
sible. As global and urban-drivenwarming continue to
increase temperatures in cities, further clarification of
the complex interactions between the many social and
physical determinants of risk of heat-related illness
and death remains necessary to optimize climate adap-
tation plans and programs.
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